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ABSTRACT

Oyebanji, Oladayo Ayobami. M.S., Department of Pharmacology and Toxicology, Wright State
University, 2020. Topical Photodynamic Therapy Generates Microvesicle Particles .

Photodynamic therapy (PDT) involves the use of light at an appropriate wavelength

acting on a photosensitizing chemical to cause cell death via generation of reactive oxygen

species. PDT has been useful in the management of skin conditions (like acne, psoriasis)

and cancers like superficial skin, esophageal and non-small cell lung cancers. In addition to

these therapeutic effects, previous murine studies from our group have demonstrated that

topical PDT induces immunosuppression in vivo. Thus, topical PDT of skin can gener-

ate systemic effects through unknown mechanisms. Our group showed that PDT induces

an immunosuppressive effect which occurs partly via Platelet-Activating Factor Receptor

(PAFR) signaling. Of importance, PAFR signaling can generate Microvesicle particles

(MVP). MVPs are small extracellular membrane-enclosed particles believed to mediate

cell-to-cell communication via the transport of bioactive signaling substances. The present

studies tested if PDT could generate MVP release. Our studies used in vitro, ex vivo (hu-

man skin explants) and in vivo (murine) models. PDT increased MVP release across the

different cell lines tested in vitro as well as treatment of human skin explants ex vivo.

Murine studies also revealed a significant increase in MVP levels in skin and blood follow-

ing PDT treatment. We also found a limited role for PAFR in this PDT-generated MVP

release. These studies reveal a consistent production of MVPs following PDT and thus,

provide insights into a possible novel mechanism whereby PDT exerts systemic effects via

the generation of MVPs.
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Introduction

1.1 Statement of problem

Topical Photodynamic therapy (PDT), although a local therapy has been shown to exert

systemic effects through poorly understood mechanisms. Microvesicle Particles (MVP) re-

leased from cells have been reported to play vital roles in cellular communication. This has

stimulated research into their functions and properties, as biomarkers, therapeutic targets,

and mediators of disease conditions. We believe that MVPs are involved in the systemic

effects exerted by PDT. Thus, finding that PDT generates MVP in skin is an important

question.

1.2 Significance

If MVPs are involved in the systemic effects of PDT, understanding the role and mechanism

of release, can help to modify and widen the applications of PDT.

1.3 Statement of Purpose

The purpose of this project is to study the generation of MVP following PDT. Thus, we

intend to answer a handful of questions pertaining to the release of MVP following PDT
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such as: Does PDT generate MVP? Can this release be blocked? What mechanisms are

involved in this release?

1.4 Hypothesis

Our central hypothesis is that PDT generates systemic effects via the generation of MVPs.

Along with this, we expect that this release will be successfully blocked by antioxidants

and the acid sphingomyelinase inhibitor, Imipramine.

1.5 Research objectives

• To demonstrate the release of MVP following PDT

• To define the mechanisms of MVP release following PDT

• To demonstrate effective blockage of MVP release following PDT

1.6 Definitions

Abdominoplasty: A surgical procedure that involves the removal of extra skin and or adi-

pose tissue from the abdomen.

Acid Sphingomyelinase (aSMase): An enzyme that catalyzes the breakdown of sphin-

gomyelin into ceramide. ASMase is a member of the sphingomyelinase family unique in

its optimal acidic pH of 4.5—5.0.

Carbamoyl-PAF (CPAF): 1-alkyl-2-acetyl-glycerophosphocholine, a non-hydrolyzable

PAF analog.

Dimethyl sulfoxide (DMSO): A universal solvent with the chemical formula (CH3)2SO.

When compounds are dissolved in this solvent, they can easily penetrate the skin or cell
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membrane.

Dulbecco’s Modified Eagle Medium (DMEM): A common cell culture media to grow

mammalian cells.

HaCaT (Heat and Calcium Transformed cells): These cells, which are aneuploid, were

originally spontaneously transformed keratinocytes from histologically normal skin but

have become immortalized.

Hanks’ Balanced Salt Solution (HBSS): A buffer solution that contains calcium and mag-

nesium to support cell adhesion.

KBM: A cell line (KB) derived from human, nasopharyngeal carcinoma. These cells un-

derwent retroviral-mediated transduction with a blank vector, and do not express the PAF-

R.

KBP: A cell line (KB) derived from human, nasopharyngeal carcinoma. These cells un-

derwent retroviral-mediated transduction with a blank vector with a functional PAF-R.

Knockout (KO): When referring to a mouse, a knockout mouse has been genetically al-

tered to not express a protein of interest.

Microvesicle particle (MVP): Also known as microvesicles and microparticles, are small

membrane-bound particles with a diameter between 100-1000 nm that can be shed from

the surface of virtually all eukaryotic cells in an active energy-dependent process.

NTERT: Immortalized human keratinocyte cell line expressing TERT made by transduc-

ing primary human keratinocytes with human telomerase reverse transcriptase (hTERT).

PAF- receptor (PAF-R): Platelet-Activating Factor Receptor, a G-protein coupled recep-

tor which binds to PAF.

Photodynamic therapy (PDT): an adaptation of phototherapy, which involves the use of

a photosensitizing drug with light of appropriate wavelength to cause cell damage.

Phosphate Buffered Saline (PBS): A buffer solution used for a variety of cell culture

applications, such as washing cells before passaging, transporting cells or tissue, diluting

cells for counting, and preparing reagents.
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Photosensitizer (PS): An agent that can produce a chemical change in another agent when

irradiated, through a photochemical process.

Platelet-Activating Factor (PAF): Acetyl-glyceryl-ether-phosphorylcholine, potent phos-

pholipid activator and mediator of many leukocyte functions, platelet aggregation and de-

granulation, inflammation, and anaphylaxis. PAF is produced by a variety of cells, but

especially those involved in host defense, such as platelets, endothelial cells, neutrophils,

monocytes, and macrophages.

Reactive Oxygen Species (ROS): Chemically reactive molecules that contain oxygen, ex-

amples include superoxide, singlet oxygen, peroxides, and hydroxyl radical.

1.7 Assumptions

In this project, it is assumed that cells will react similarly to the various treatments as a cell

in a living organism. It is also assumed that there were no outside influences on the cell’s

reactions. For skin samples, it is assumed that all skin samples from the different patients

will react similarly to the treatments. It is assumed that age, gender, and ethnicity will not

affect MVP release from the various treatments. With the mouse model, it was assumed

that the mice would react severally to the various treatments. It was also assumed that age

and gender did not affect the MVP response to the treatments.

4



www.manaraa.com

Literature Review

2.1 Photodynamic therapy

Photodynamic therapy (PDT) is a therapy that presents an effective way to get rid of un-

healthy (i.e precancerous and cancerous) cells. It involves an interplay between light acting

on a photosensitive (PS) drug/chemical to generate reactive oxygen species (ROS) causing

cytotoxicity [88][65][79][118][31]. Targeted cytotoxic cellular destruction occurs when tu-

mor cells absorb and retain photosensitizers and are subsequently illuminated with visible

light [5]. PDT is effective in treating superficial skin cancers. It is effective in the man-

agement of actinic keratoses, superficial basal cell carcinomas, as well as low-risk nodular

basal cell carcinomas outside the head and neck region [100][84][105]. Other conditions

that have been noted to respond to PDT include psoriasis, warts, mycosis fungoides, extra-

mammary Paget’s disease, and off-label uses for facial rejuvenation, and mild-to-moderate

acne have been documented [100][102]. ROS are produced when photosensitizers accu-

mulate, either actively or passively in tumor cells and are exposed to light of appropriate

wavelength. Accumulation of the photosensitizer in the tumor cells greatly determines

the efficacy of the generation of ROS for tumor destruction and thus, overall efficiency of

PDT treatment[81]. PDT is a local therapy that is not expected to exert long-term systemic

side effect [110]. With proper application, PDT carries little risk of long-term side effects.

However, accumulation of the photosensitizer in surrounding healthy cells could cause

some side effects. Unlike radiation, it can be repeated many times, it is less invasive than
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surgery and has the advantage of being targeted more precisely, compared to chemotherapy

[74]. With the observation of systemic immunosuppression following PDT [48][38][73],

it became imperative to investigate the possible mechanisms through which this local ther-

apy can exert systemic effects. This project is one of such attempts, in which we examined

the involvement of certain cellular communication agents in the systemic response to PDT.

We believe that these agents are released along with the photochemical products mediating

local PDT effects.

2.1.1 Photochemical reactions in PDT

When a PS drug is exposed to light at appropriate wavelength, the PS drug gets excited

from the ground state to an excited triplet state [88][73]. This excited PS molecule then

transfers energy to Oxygen molecules converting them from the ground triplet state (3O2)

to the excited singlet state (1O2) [57][114][33]. This transfer of quanta energy from the

excited triplet PS molecule has been shown to occur in two pathways designated as Type

I and Type II photochemical reactions Fig.2.1. Type I photochemical reaction involves the

formation of free radicals which can react with molecular oxygen to generate ROS. Super-

oxide anions thus formed, mediate oxidative stress within the cell [2] and can also form

hydrogen peroxide H2O2 which easily pass through biological membranes to cause dam-

age. Through the Haber Weiss reaction Fig.2.1, H2O2 can react with superoxide anions at

high concentrations to produce highly reactive hydroxyl radical, which can mediate further

cellular damage. H2O2 can also generate hydroxyl radicals by reacting with metals such

as iron or copper, via the Fenton reaction as shown in Fig.2.1. Type II photochemical

reaction involve the direct transfer of energy to molecular oxygen to generate high yield

of highly reactive excited singlet oxygen molecules [28]. Of these two fundamental PDT

reactions, the type II occurs predominantly with most PD drugs in circulation, although

both reactions occur in parallel [114][33][103]. We do believe that these photochemical

reactions also release certain agents that mediate intercellular communication and could be
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strongly involved in the systemic effects exerted by PDT.

Figure 2.1: Overview of photochemical reactions during PDT. Several types of primary and
secondary photochemical reactions cause production of reactive oxygen species and dose-
dependent cellular damage. H2O2, hydrogen peroxide; O2 (1∆g), singlet oxygen (excited
state); O2 (3

∑
g), triplet oxygen (ground state); O−

2 , superoxide anion; OH− , hydroxyl
radical; SOD, superoxide dismutase; X−/+ , anion/cation species; X−, radical species.
Adapted from ref ([88])

2.1.2 Photosensitizers

A photosensitizer (PS) is a molecule or drug that can be absorbed by cells and capable

of generating photoproducts when exposed to light at appropriate wavelength [80]. These

photoproducts through series of reaction described above react with oxygen (see Fig.2.1).

Most PS employed in PDT are capable of generating high quantum yields of singlet oxygen

molecules required for tissue damage [6]. Protoporphyrin IX (PPIX) is the photosensitive

molecule believed to be the bedrock of PDT reactions [116][59][21] and this has been for-

mulated for synthetic production in different forms. Studies investigating the accumulation

of porphyrin at tumor sites shows its dependence on disturbances in the enzymatic frame-

work of the heme pathway [17][44]. Notably, an inhibition of the enzyme ferrochelatase
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leads to defective heme production and thus, a negative feedback which would favor the

accumulation of PPIX within the tumor cells; see Fig.2.2 [19]. Apart from PPIX, other

tumor-specific photosensitizers that have been identified include coproporphyrin and uro-

porphyrin [40][12][39]. Apart from use in PDT, through the use of a photodynamic flu-

orescence diagnosis technology, a photosensitizer can be adapted to diagnose tumors and

possibly know its extent [50]. This is achievable as most photosensitizers are capable of

fluorescence [7][23]. The ideal photosensitizer is one that is able to achieve preferential

accumulation within tumor sites [32]. ALA has been shown to generate exponentially high

levels of porphyrin in tumor cells as compared to normal skin cells, thus making it an ad-

mirable photosensitizer for PDT purposes [39][46]. Apart from selectivity, other desirable

properties of an ideal PS include amphiphilicity (ability to be transported in blood without

precipitating and gaining effective cell membrane penetration) [89], must not be toxic or

have mutagenic effects[10], safe with minimal side effects and rapid clearing from the body

[115].

Figure 2.2: Biosynthesis of heme in mammals. Mitochondrial enzymes are in green while
cytosolic enzymes are in red. Adapted from ref [8]
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2.1.3 Applications of PDT

PDT has found wide application in oncology following the study of hematoporphyrin

derivatives (HpD) and its clinical uses in the 70s [109]. It has been well-argued that the

unique redox regulatory mechanisms of cancer cells can be modulated leading to effective

therapeutic means to destroy cancer cells [108][104]. By generating free radicals and re-

active oxygen species within cells, this redox environment so created has been shown to

be dangerous for normal cell sustainability due to the increased oxidative stress, both on

the membrane and the cytosolic organelles, as well as the nucleus [95][47][15][45]. PDT

is more efficient for non-small cell lung tumors that are still within the lungs, and is used

as an adjunct to Chemotherapy or radiation, for metastatic tumors [98][77]. With selective

delivery of PDT to tumor sites, PDT poses as a minimally invasive alternative to other con-

ventional cancer therapies like surgery, and limits damage to neighboring healthy tissues

[109][52]. While PDT has been largely used in oncology since its discovery, within the

last decade, it has gained significant application outside oncology [88]. PDT has shown

significant favorable applications in dermatology. Apart from its use in certain skin can-

cers, PDT presents an effective therapeutic option in the management of actinic keratosis,

acne vulgaris [93][29], psoriasis, warts, impetigo. In the last decade, PDT has also been

explored widely for its antimicrobial properties [26][43][75][56][34].

2.2 Microvesicle Particles

Microvesicle particles (MVP), also called microparticles, microvesicles, ectosomes, belong

to a group of cell membrane-derived particles, called extracellular vesicles (EVs) [90]. This

group comprises exosomes, MVPs and apoptotic bodies (Fig.2.3). Although it is currently

difficult to clearly delineate these particles, mode of formation and size are two promising

factors that can be used to classify them [90]. Recent guidelines in the classification of EVs

adopted the use of Large extracellular vesicles for MVPs and Small extracellular vesicles
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for exosomes [107]. EVs were previously regarded as cell debris but have gained a progres-

sive attention as potential biomarkers or mediators of several metabolic processes in the last

decade [72][66]. Together with cell-to-cell contacts and cytokines, EVs have been found to

play a role in cellular communication [20]. MVPs are spherical, membrane-bound particles

with a diameter of 150-1000nm, that bud directly off cell membrane surfaces [3]. They are

secreted by all eukaryotic cell types due to various stimulus including serum withdrawal,

shear stress and cytokine signaling [113]. Although not fully understood, few pathways

have been identified to play a role in the release of MVPs. Amongst these, the P2X7R ap-

pears to be dominant [42][25]. Other identified pathways include mitogen-activated protein

kinase (MAPK) pathway [67], small GTPases [82][11]. MVPs have been shown to contain

various bioactive proteins, lipids, cytokines, nucleic acids, membrane receptors and ad-

hesion molecules [90][72][9][22]. Apart from their roles in intercellular communication,

MVPs have been explored as a biomarker, mediator of several conditions and potential

targets for therapeutic interventions [71][117][111]. Following their involvement in the

systemic effects induced by ultraviolet B (UVB) radiation [70][120], it is thus a possibility

that MVPs can be possible mediators of PDT systemic effects.

Figure 2.3: Schematic representation of the mechanisms of formation of microvesicles,
exosomes and apoptotic bodies ([66])

10



www.manaraa.com

2.3 Platelet Activating Factor Receptor

The platelet activating factor receptor (PAFR) is a G-protein coupled transmembrane recep-

tor found on multiple types of classically immune cells as well as epithelial cells, through

which the inflammatory phospholipid, platelet activator factor (1-alkyl-2-acetyl glycerol-

phosphocholine; PAF) carries out its functions [120][91]. PAF mediates important systemic

responses such as inflammation, allergic reactions, platelet aggregation. PAFR is activated

by oxidized glycerophosphocholines (ox-GPC) produced when ROS acts on glycerophos-

phocholines (GPC). As such, pro-oxidative stressors such as cigarette smoke, jet fuel, UVB,

chemotherapeutic agents can generate PAFR ligands needed to activate it [54][94][119]. It

is thus possible that PDT, with its copious ROS yield, can generate PAFR ligands and ulti-

mately, lead to its activation. A functional analog of PAF, carbamyl platelet activating factor

(1-hexadecyl-2-N-methylcarbamyl-glycero-3-phosphocholine; CPAF) also has strong ag-

onistic effects at the receptor, when bound [120][119][36]. Being non-metabolizable and

relatively stable, this has been exploited for use in experimental set-ups, as done in this

study and other studies involving the PAFR. A study involving our group, used in vitro

and in vivo murine models to show the involvement of the PAFR in the systemic immuno-

suppression observed following topical PDT with 5-Aminolevulenic acid [38]. With the

understanding that PAFR signaling releases MVPs following UVB irradiation [70][18], we

believe that PDT, through generation of ROS and thus PAFR activation, can lead to MVP

release.
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Materials and Methods

3.1 Introduction

This chapter discusses the experimental models, materials, procedures and analysis per-

formed to generate the relevant data in line with the aim and objectives of this study. Basic

models employed in this study include in-vitro cell lines, ex vivo human skin and in vivo

murine model.

3.2 Cell Culture

Five cell lines were used in this study. Spindle-shaped Heat and Calcium transformed (Ha-

CaT) cell line is derived from spontaneously immortalized human keratinocytes and like

primary keratinocytes, they exhibit basal cell properties and are capable of responding to

inducers of cell differentiation such as calcium and high cell density [97][83]. NTERT

cells are immortalized primary keratinocytes expressing telomerase hTERT [30]. Normal

Human Fibroblasts were derived primarily from human skin culture [60][37]. KB cells

were primarily isolated from a patient with nasopharyngeal carcinoma, representing a hu-

man cell model without PAFR. The cells were later transduced with MSCV2.1 retrovirus

containing PAF-R [KBP] and KBM cells with control MSCV2.1 retrovirus without PAF-R

[120][86].
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3.2.1 Cell Growth Media and Storage Condition

HaCaT, Fibroblasts and KBP/ KBM cells were grown in DMEM media. Media consisted

of a 500 mL bottle high glucose DMEM containing 100 U penicillin/ 0.1 mg/mL strepto-

mycin (5mL), 2 mM glutamine (5 mL), and 50 mL 10% FBS FetalClone III. For NTERTs,

EpiLife Growth media with human keratinocyte growth supplement (HKGS) 100x and 100

U penicillin/ 0.1 mg/mL streptomycin (5mL) was used. All the cells were kept at 37oC and

5% CO2 in humidified incubator.

3.2.2 Cell Passage

Media was removed from cells (KBs, HaCaT, Fibroblasts) and plates were washed 3 times

with 10 mL of PBS 1X. 2 mL of 0.25% Trypsin-EDTA 1X (for HaCaT) and 0.05% Trypsin-

EDTA 1X (For Fibroblasts and KB cells) was then added to each plate and placed in the

incubator for 5-10 minutes. Then, 8 mL of media was added to each plate to bring it back

to 10 mL and cells were triturated. 6 drops of the cells suspended in media was added to a

new plate with 10 mL of fresh media. For NTERTs, plates were washed three times with

10 mL PBS 1X. Then, 2 mL of 0.05% Trypsin- EDTA 1X was added to each plate and

placed in the incubator for 10 minutes. 6 mL of high glucose DMEM was then added to

the plates and triturated. Cells which were to be treated, were counted before adding to the

new plates to ensure that equal number of cells were added to each plate. For the sake of

consistency of results, cells were counted and grown for equal number of days each time.

3.2.3 Changing Media

To change media, the old media was removed from the culture plate and was washed 3x

with PBS 1X. 10mL of fresh complete media was then added. Media change is done every

2-3 days between passaging.
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3.2.4 Cell Counts

Cells were first washed 3x with 10mL PBS 1x. 2-3mL 0.05% Trypsin was added and

returned to the incubator for 5-7mins. As soon as the cells got detached, 8mL of fresh

media was added to the plate. 10L of this suspended cell mixture was added to 10L Trypan

blue stain. 10L of this resulting mixture is pipetted onto a slide and cell count was obtained

on the Countess machine.

3.2.5 Bringing Up Cells from Liquid Nitrogen

Vials containing cells were taken out from liquid nitrogen and allowed to thaw at room

temperature. Cells were immediately added to a new culture plate containing 10mL of

fresh media. 24hours later, cells were fed and then passed onto new plates.

3.2.6 Treatments

3mL of Hank’s Balanced Salt Solution and 10mg/mL Bovine serum albumin (HBSS+BSA)

with desired concentration of treatment reagents were added to each plate. Sham culture

plates received plain HBSS+BSA and were incubated for the desired length of time. Ve-

hicle treated cells received 0.1% of Ethanol in HBSS+BSA. CPAF-treated cells received

3L of 100M CPAF added to 3mL of HBSS+BSA to obtain final concentration of 100nM.

PMA treated cells received 3L of 500M PMA added to 3mL of HBSS+BSA calculated to

final concentration of 500nM.

PDT Treatment

PDT was done by incubating cells with 1 mM of 5-Aminolevulenic acid (5-ALA) in com-

plete media [62][63] in the dark for 4 hours as has been designed in this model [69][41].

5-ALA-containing media was then discarded, cells were washed 3x with serum-free HBSS
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and then embedded in 3mL of HBSS+BSA before subsequent exposure to blue LED light

source 415nm at 20 J/cm (1663secs). For the dose response study, cells were exposed

to different doses of blue light - 2.5J/cm2 (207.875secs), 5J/cm2 (415.75secs), 10J/cm2

(831.5secs) and 20J/cm2. Supernatant was collected after 4hours of incubation.

3.2.7 Inhibitors

Imipramine, an aSMase inhibitor (101) used in the experiments was added to the plate

and incubated for 4 hours as with other treatments. 3L of 50mM imipramine with 3mL

of HBSS+BSA was added to each plate to make final concentration of 50M. However,

for PDT, Imipramine was added after the light exposure due to the sunscreen effect of

imipramine. After 4hours incubation in the dark with 5-ALA, cells were washed 3x with

serum-free HBSS. 0.5M Ascorbic acid (Vitamin C) and N-acetylcysteine (NAC) in fresh

complete media was added to respective plates and incubated for 1hour. Plates were then

washed again with serum-free HBSS and exposed to light at 20 J/cm (1663secs).

3.2.8 MVP Isolation

After the determined incubation time, supernatant from the treated culture plates were

transferred to 2mL centrifuge tubes and centrifuged immediately in microcentrifuge tubes

at 2000xg for 20 minutes at 4oC. Then the supernatant was transferred to a new tube and

centrifuged at 20,000xg for 70minutes. After the centrifugation, the supernatant was dis-

carded, and tubes were allowed to air-dry. Pellet was re-suspended in 100L of filtered 1x

PBS. The samples were analyzed with Nanosight NS300.

3.2.9 MVP Analysis

The reading obtained from the Nanosight NS300 was multiplied by the dilution rate and

then divided by the cell count. The total MVP count normalized with cell number were
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multiplied by 100,00cells and calculated as fold change. The errors were calculated for

each treatment groups, graphed on GraphPad Prism 8 and analyzed with one-way and two-

way ANOVA to show significance with a 95% confidence interval.

3.3 MTT Assay for Cell Survival

Medium was removed from plates after respective treatment. 1.25mL of 5mg/mL MTT

solution was added to 23.75mL of Epilife medium (for 0.25mg/mL MTT final concentra-

tion MTT final concentration). 2mL of this MTT-containing medium was added to each

plate and incubated for 45min at 37oC. Medium was then removed and replaced with 1mL

of DMSO to solubilize MTT dye and was well mixed. 100L of the resulting solution was

transferred to a 96-well plate, 3 wells per sample. Using the Microtek R© plate reader, ab-

sorbance was read at 570nm. Cell survival was calculated by an average of 3 identical wells

and normalized to the no treatment group.

3.4 Skin

Abdominoplasty skin explants were obtained from Miami Valley Hospital, Dayton, Ohio.

Patients were between the ages 36-65years.

3.4.1 Treatment

Skin was treated with either 90% DMSO in 10% EtOH vehicle, 250g CPAF made in ve-

hicle, 500g PMA, 50mM Imipramine, 20 J/cm2 PDT. PDT was performed by applying

100ng of 5-ALA on skin and incubating in the dark for 4hours with subsequent exposure

to blue light at 20 J/cm2 (1663secs). Imipramine was added immediately after PDT.
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3.4.2 Punch Biopsies

After treatment, the skin pieces were placed in a 37oC water bath in individual culture

dishes. Then 6 mm punch biopsies were taken from the center of each piece of skin af-

ter 4hours of incubation. Fatty tissues were removed, they were individually weighed and

placed in separate Eppendorf R© tubes. Tissues were covered in 500L of 5mg/mL collage-

nase dispase made in 1:1 H2O. The tissue was then cut up finely in the Eppendorf R© tube

and digested overnight in a shaker at 37oC.

3.4.3 MVP Extraction from Punch Biopsies

After the overnight digestion of the tissue, the tubes were filled with an additional 1-1.5mL

of PBS (1x) and centrifuged at 2000 x g for 20 minutes. Supernatant was moved to a new

tube and centrifuged at 20,000 x g for 10 minutes. The supernatant was moved again to a

new tube and centrifuge at 20,000 x g for 70 minutes. Supernatant was then discarded, and

pellet was re-suspended in 100 L filtered PBS (1x). Samples were placed in -80C freezer

until analysis.

3.5 Mice

C57BL/6, Smpd1 KO and Pafr KO mice were recruited for use in this project. Mice were

housed together, provided with water and food ad libitum in a 12 hours light and dark cycle

room. The protocol for the experimental use of animals was approved by Wright State

University, School of Medicine’s Laboratory Animal Care and Use Committee (LACUC).

3.5.1 Treatment

Mice were injected with ketamine/xylazine, shaved and treated with either 90% DMSO

in 10% EtOH vehicle, 100g CPAF made in vehicle, 500g PMA made in vehicle, 50mM
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Imipramine, 20 J/cm2 PDT. PDT was performed by applying 20ng of 5-ALA on the shaved

back of mice and kept in the dark for 4hours with subsequent exposure to blue light at 20

J/cm2 (1663secs). Imipramine was added immediately after PDT.

3.5.2 Murine Punch Biopsies

After 4hours of incubation, 5mm punch biopsies were taken from the treated skin on the

back of each mice and each skin biopsies were individually weighed. The skin biopsies

were placed in 2mL microcentrifuge tubes and 500L of 5mg/mL collagenase dispase made

in 1:1 H20 was added to each tube. The tissue was finely chopped in the microcentrifuge

tube and digested overnight in the shaker at 37C. After the overnight digestion, the tube was

filled up with filtered PBS and then centrifuged at 2000xg for 20minutes. The supernatant

is transferred to a clean microcentrifuge tube and centrifuged at 20,000xg for 10minutes.

The supernatant is finally transferred to another clean microcentrifuge tube and centrifuged

at 20,000xg for 70minutes. Supernatant was discarded and the pellet was re-suspended in

100mcl filtered PBS (1X). Samples were stored at 4oC until analysis.

3.5.3 Blood Sample Collection

At the same time blood was collected from the mice, euthanized in CO2 tank and cervically

dislocated. The blood was drawn from the heart of a mice with 1ml of 30g BD syringe and

collected in the microcentrifuge tubes. Blood plasma was isolated by centrifugation at

2000xg for 20min and the blood plasma (upper clear layer) was isolated and pipetted into

a new tube carefully. The MVP was isolated after centrifugation at 2000xg for 20minutes

and 20,000xg for 70 minutes.
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3.6 Statistical Analysis

Mean and significance were determined, and graphs were made using GraphPad Prism 8.

Data is expressed as mean standard error. Groups were compared using one-way ANOVA.

Differences in sample were considered significant if the P values were less than 0.05. Nota-

tion within the figure include P<0.05(*), P<0.01(**), P<0.001(***) and P<0.0001(****).
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Results

4.1 Generations of MVPs following PDT

These studies were designed to study the pattern of generation of MVP generation follow-

ing treatment with PDT.

4.1.1 PDT Dose Response in HaCaT Cells

To determine the optimal dose of PDT that can generate MVPs without exerting a toxic

effect, different doses of blue light (2.5J, 5J, 10J, 20J) along with 5ALA were used on

primary keratinocytes and incubated for 4 hours (Fig.4.1). HaCaT cells responded with

progressive increase in MVP generation with the maximal response recorded with 20J,

which is in line with previous studies using similar cells [38]. However, this increasing

does response in MVP generation was accompanied by a corresponding decrease in cell

survival rate, with the most lethal dose being 20J.

4.1.2 Time Response in MVP Generation following PDT

Conventional studies in PDT employ various time points depending on the end points de-

sired, ranging from immediately post-treatment to as long as days. We sought to determine
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Figure 4.1: Dose response curve of PDT-induced MVP release in HaCaT cells. Cells
either received No treatment (NT), 500ng PMA in 3mL HBSS+BSA, 100ng CPAF in
3mL HBSS+BSA, 2.5J PDT (208secs), 5J PDT (416secs), 10J PDT (832secs) or 20J PDT
(1663secs). PMA and CPAF being positive controls generated 2-3 folds of MVP as com-
pared to control. A progressive increase in MVP count was obtained as PDT dose in-
creased, reaching a peak at 20J. The data depicted are mean SE fold change in MVP count
(average of n=3). Groups were compared using one-way ANOVA and Tukey’s post-hoc
test. Differences in samples were considered significant if the P value was less than 0.05.
P<0.05 (*), P<0.01(**), P<0.001(***) and P<0.0001(****).
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Figure 4.2: Relative survival rate of HaCaT cells following PDT treatment. After the dif-
ferent treatments in Fig. 4, cells were subjected to an MTT assay at 4hours post-treatment.
A progressive decline in cell survival rate was seen as PDT dose increased, reaching the
lowest at 20J suggesting the most lethal effect on cells. The data depicted are mean SE fold
change in MVP count (average of n=3). Groups were compared using one-way ANOVA
and Tukey’s post-hoc test. Differences in samples were considered significant if P value is
less than 0.05. P<0.001(***) and P<0.0001(****).
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the optimal time point favorable for MVP generation. Primary keratinocytes were treated

with PDT and lysates were harvested at different time points 0h, 2h, 4h, 8h and 24h. Maxi-

mum generation of MVP was observed 24hours post-PDT. However, this is comparable to

the amount generated 4hrs post-PDT, with no significant difference.

Figure 4.3: Time response of PDT-induced MVP production in HaCaT cells. After PDT
treatment, supernatants were either harvested immediately (0h) or incubated for 2h, 4h,
8h or 24h before being collected for MVP isolation. A somewhat progressive increase
occurred in MVP count as time progresses. There was, however, no significant difference
between the count at 4h, 8h and 24h. The data depicted are mean SE fold change in MVP
count (average of n=3). Groups were compared using one-way ANOVA and Tukey’s post-
hoc test. Differences in samples were considered significant if P is less than 0.05. P<0.05
(*), while ns denotes no significance.
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4.1.3 Generation of PDT Across Different Cell Lines

Primary keratinocytes (HaCaT), NTERTS, and normal human Fibroblasts were treated with

20J/cm2 of PDT, with lysates collected after 4hrs based on time kinetic and dose data

(Fig.4.1 and Fig.4.3). A significant increase in MVP generation was noted across these 3

cell lines.

4.1.4 Generation of MVP following PDT ex vivo

Human skin explants were treated with 20J/cm2 of PDT and biopsies were taken after

4hrs of incubation at 37oC, with subsequent isolation and quantification of MVPs. PDT

significantly generated increased levels of MVPs.

4.1.5 Generation of MVPs following PDT in vivo

Anesthetized C57BL6 mice had their backs shaved followed by 20J/cm2 of PDT treatment.

Skin biopsy and Plasma samples were obtained after 4hrs. There was an increase in the

amount of MVP generated in both skin and plasma samples.

4.2 Role of Reactive Oxygen Species in the Generation of

MVPs following PDT

An established mechanism of PDT action is the generation of reactive oxygen species

(ROS) [88][73][16][23]. These set of studies investigate the role of ROS in the genera-

tion of MVPs following PDT. Using the antioxidants Ascorbic acid (Vitamin C) and N-

acetylcysteine (NAC), HaCaT cells were treated with these for 60mins, after incubation
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(a)

(b)

Figure 4.4: PDT generates MVPs across different cell types. HaCaT (a) NTERT (b) and
Fibroblasts (c) were either treated with plain HbSS+BSA (NT), 0.1% EtOH (Veh), 1mM
5ALA, 500ng PMA, 100ng CPAF, Blue light alone (BL) or PDT and were incubated for
4hours. PDT generated significantly high amounts of MVPs across the 3 different cell
lines. The data depicted are mean SE fold change in MVP count (average of n=8). Groups
were compared using one-way ANOVA and Tukey’s post-hoc test. Differences in samples
were considered significant if P is less than 0.05. P<0.05 (*), P<0.01(**), P<0.001(***)
and P<0.0001(****).
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Figure 4.5: PDT generates MVPs ex vivo in human skin. Human skin explants were treated
with nothing (NT), 90% DMSO in 10% EtOH, 100ng 5ALA, 500g PMA in 100L DMSO,
250g CPAF in 100L DMSO, Blue light alone (BL) or PDT and were incubated for 4hours
at 37C after which biopsies were taken. PDT generated significant amount of MVP. The
data depicted are mean + SE fold change in MVP count (average of n=5). Groups were
compared using one-way ANOVA and Tukey’s post-hoc test. Differences in samples were
considered significant if P is less than 0.05. P<0.05 (*) and P<0.01(**).
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Figure 4.6: PDT generates MVPs in vivo in Mice skin. C57BL6 mice had their backs
shaved and were treated with 90% DMSO (Sham), 500g PMA, or PDT. Biopsies and blood
samples were taken after 4hours. PDT generated significant amount of MVP both in skin
(a) and plasma (b). The data depicted are mean SE fold change in MVP count (data
was from at least n=5mice). Groups were compared using one-way ANOVA and Tukey’s
post-hoc test. Differences in samples were considered significant if P is less than 0.05.
P<0.001(***).

with 5-ALA but prior to blue light exposure at 20J/cm2. Supernatants were collected fol-

lowing 4hrs of incubation at 37oC. As shown in Fig.4.6, both Vitamin C and NAC treatment

significantly inhibited the MVP generated by PDT, alone and in combination.

4.3 Roles of aSMase in the Generation of MVP following

PDT

To test the role of acid sphingomyelinase (aSMase) in the generation of MVP following

PDT, a known inhibitor of the enzyme, imipramine [68][24] was used on cells, skin explant

and mice skin. Because imipramine can absorb UV, it was given after the blue light.
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Figure 4.7: Antioxidants inhibit production of MVPs by PDT in vitro. HaCaT cells had
5-ALA incubation in the dark for 4hrs and were then treated with the antioxidants, 0.5mM
Vitamin C (VitC) and 0.5mM N-acetylcysteine (NAC) for 1hour. Cells were subsequently
exposed to blue light and supernatant were harvested 4hrs later. Other groups were treated
as earlier described. Both antioxidants significantly reduced MVP generated following
PDT. There was, however, no difference when they were combined. The data depicted are
mean SE fold change in MVP count (average of n=5). Groups were compared using one-
way ANOVA and Tukey’s post-hoc test. Differences in samples were considered significant
if P is less than 0.05. P<0.05 (*), P<0.01(**), P<0.001(***), P<0.0001(****) and ns
denotes not significant.
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4.3.1 Roles of aSMase in the Generation of MVP following PDT in

cells

Different cell lines – HaCaT, NTERTS and primary cultures of human fibroblasts were

treated with PDT, imipramine was added immediately after exposure to blue light and su-

pernatants were harvested after 4hrs. As shown in Fig.4.7, imipramine was able to sig-

nificantly reduce the production of MVPs following PDT in these cell lines. On some

experiments, cells were treated with CPAF or the PKC agonist, PMA.

4.3.2 Role of aSMase in PDT-generated MVP in Skin

The next studies were designed to test if the aSMase inhibitor, imipramine, can block MVP

generation in human skin explants in response to experimental PDT. Following the pre-

vious PDT protocol, skin explants were treated with imipramine immediately after blue

light exposure and punch biopsies were taken 4hrs later. Imipramine was able to reduce

significantly, the level of MVP generated by PDT.

4.3.3 Role of aSMase in PDT-generated MVP in mice

The next studies tested the role of aSMase in vivo using knock-out mice. C57BL6 and

aSMase-deficient (Smpd1 -/-) mice were recruited to test the role of aSMase in the genera-

tion of MVP following PDT. The anesthetized mice had their backs shaved with the topical

application of 5-ALA and subsequent exposure to blue light. Imipramine was applied topi-

cally immediately after light exposure. Skin biopsies and plasma samples were taken after

4hrs. As shown in Fig4.8, imipramine treatment resulted in a reduction in the production

of MVPs by PDT.
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(a)

(b)

Figure 4.8: Imipramine inhibits production of MVPs by PDT in vitro. HaCaT cells (a)
NTERTs (b) and Fibroblasts (c) were treated with 50M imipramine, a known aSMase in-
hibitor, immediately after PDT. Other groups were treated with 100nm CPAF, 500nm PMA
or 0.1%EtOH (Veh). Imipramine was able to inhibit production of MVPs by PDT signifi-
cantly across these 3 cell lines. The data depicted are mean SE fold change in MVP count
(average of n=8). Groups were compared using one-way ANOVA and Tukey’s post-hoc
test. Differences in samples were considered significant if P is less than 0.05. P<0.05 (*),
P<0.01(**), P<0.001(***), P<0.0001(****) and ns denotes not significant
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Figure 4.9: Imipramine inhibits production of MVPs by PDT in human skin explants ex
vivo. Abdominoplasty skin explant was treated with 90% DMSO in 10% EtOH vehicle,
1mM 5 Aminolevulinic acid (5-ALA), 500ng PMA in 100L DMSO, 250ng CPAF in 100L
DMSO, Blue light alone, PDT and had 50mM imipramine applied immediately after blue
light exposure. Punch biopsies were taken after 4hrs incubation at 37C. Other groups were
treated as earlier described. Imipramine was able to inhibit production of MVPs by PDT
significantly in human skin. The data depicted are mean SE fold change in MVP count
(average of n=5). Groups were compared using one-way ANOVA and Tukey’s post-hoc
test. Differences in samples were considered significant if P is less than 0.05. P<0.05 (*),
P<0.01(**)

31



www.manaraa.com

Figure 4.10: Imipramine inhibits production of MVPs by PDT in vivo. C57BL6 mice
had their backs shaved and received PDT. Imipramine was applied immediately after blue
light exposure. Punch biopsies and blood samples were taken after 4hrs incubation at 37C.
Other groups were treated as earlier described. Imipramine was able to inhibit production
of MVPs by PDT both in the skin and plasma. The data depicted are mean SE fold
change in MVP count (average of n=5). Groups were compared using one-way ANOVA
and Tukey’s post-hoc test. Differences in samples were considered significant if P is less
than 0.05. P<0.05 (*), P<0.01(**), P<0.001(***)

Figure 4.11: Role of acid sphingomyelinase in PDT-induced MVP release. C57BL6 and
Smpd1 KO mice had their backs shaved and had PDT done as previously. There was no
significant MVP generation following PDT in the Smpd1 KO mice unlike the C57BL6
strains. This further strongly suggests the major role aSMase plays in the generation of
PDT-induced MVP. The data depicted are mean SD fold change in MVP count (n=4mice
from a single experiment). Groups were compared using student’s paired t-test. Differences
in samples were considered significant if P is less than 0.05. P<0.05 (*), P<0.01(**),
P<0.001(**) and ns denotes not significant
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4.4 Role of Platelet Activating Factor Receptor (PAFR) in

PDT-generated MVP

The platelet activating factor receptor (PAFR) has been implicated in the generation of

MVPs following treatment with Ultraviolet B (UVB) [120]. As PDT is known to gen-

erate PAF, the next studies were thus designed to investigate the role of the PAFR in the

generation of MVPs following PDT.

4.4.1 Role of PAFR in PDT-generated MVP in vitro

KB cells, derived from human nasopharyngeal cell line that do not express PAFR (desig-

nated as KBM cells) were employed to test the role of the receptor in the generation of

MVPs following PDT. A part of these cells was transfected with the PAFR and designated

as KBP cells. As shown in Fig.4.10, both KBP and KBM cells showed similar significant

increase in the generation of MVPs. However, KBP cells responded to CPAF treatment by

generating MVP unlike KBM cells. Moreover, both KBP and KBM cells responded to the

PAF-independent stimulus PMA.

4.4.2 Role of PAFR in PDT-generated MVP in vivo

The next studies were defined to assess the role of PAF-R in PDT-mediated MVP generation

in mice. C57BL6 and pafr -/- mice had their backs shaved and were treated with PDT. Skin

biopsies and plasma samples were taken after 4hrs. As shown in Fig.4.11, these studies

revealed that MVP generation in both groups of mice was significantly increased following

PDT as compared to the sham groups. However, PDT did not generate a significant increase

in MVP on the pafr KO skin.

33



www.manaraa.com

Figure 4.12: Role of PAFR in PDT-induced MVP generation using pafr +/- KB cells.
PAFR-bearing KBP cells and PAFR negative KBM cells were treated with 100nm CPAF,
500nm PMA, PDT at 20J/cm2 and incubated for 4hours before being processed for MVP
isolation. PDT generated significant amount of MVP compared to the no treatment groups,
suggesting a PAFR-independent process. The data depicted are mean SE fold change in
MVP count (n=10). Groups were compared using one-way ANOVA and Tukey’s post-hoc
test. Differences in samples were considered significant if P is less than 0.05. P<0.05 (*),
P<0.0001(****) and ns denotes not significant

Figure 4.13: Role of PAFR in PDT-induced MVP. C57BL6 and pafr KO mice had their
backs shaved and had PDT done as previously, with 250ng of CPAF. MVP generation
in both groups of mice was significantly increased when compared to the sham groups.
However, PDT did not generate a significant increase in MVP on the pafr KO skin. This
could suggest a partial involvement of the PAFR in PDT-induced MVP generation. The
data depicted are mean SD fold change in MVP count (n=6 mice). Groups were compared
using one-way ANOVA and Tukey’s post-hoc test. Differences in samples were considered
significant if P is less than 0.05. P<0.05 (*), P<0.01(**) and ns denotes not significant.
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Discussion

5.1 Summary

PDT, despite its local application, is capable of generating systemic effects; some, which

may be undesirable [76][48][38][86]. Mechanisms involved in this systemic response are

poorly understood. Ferracini et al postulated that PAFR ligands play a role in the systemic

immunosuppression observed following PDT [38]. Cytokines and certain inflammatory in-

filtrates have also been implicated in this effect [48][35]. PAFR ligands have been shown to

be involved in the systemic immunosuppression caused by Ultraviolet B (UVB) exposure,

as previously demonstrated by our lab [4]. This current study was designed to investigate

the possible involvement of MVPs in PDT effects. MVPs, like other EVs, are believed to

mediate certain cellular communications, act as potential biomarkers and can thus, mediate

certain systemic effects in the body once generated. The present studies provide evidence

that PDT can generate significant amounts of MVPs in vitro, ex vivo and in vivo. Although

MVPs can be shed by all eukaryotic cell types, for this study we used keratinocytes- im-

mortalized (HaCaT), modified (KBP/KBM), TERT-bearing (NTERT), and Fibroblasts. Our

dose and time kinetic studies suggested 20J/cm2 (1663s) and 4hrs post-blue light exposure

as favorable and most efficient (Fig.4.1 and Fig.4.3). In furtherance to this, incubation

with 5ALA for 4hrs followed by 20J/cm2 (1663s) of blue light exposure produced the most

lethal effect on HaCaT cells, being immortalized keratinocytes with tumorigenic abilities

(Fig.4.2). The Federal Drug Administration (FDA) clinical guideline recommends 5-ALA
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skin incubation for 14-18hrs, although 1-2hrs are commonly used in clinical practice [85].

Recent studies, however, suggests shorter 5ALA incubation times and lesser light expo-

sure [62][13]. These variations could arise due to the different cells being used, and it is

thus advisable, to adapt PDT conditions to suit each cell / tissue in focus. Normal human

skin is capable of taking up ALA rapidly and converting it to porphyrin both in vivo and

ex vivo [39]. Skin malignancies and pre-malignant conditions such as actinic keratoses,

are thus not surprisingly very responsive to PDT likely through their ability to take up in-

creased amounts of 5-ALA. Our model involved ex vivo (human skin) and in vivo (murine

skin) investigation of PDT effect on skin and we observed a significant increase in MVP

generation following PDT (Fig.4.4 and Fig.4.5). Circulating endogenous photosensitizers

have been found to play some role in accelerated PDT response [59][51][64][112][58].

This agrees with the slight significance in the blue light alone treatment we observed in

our study (Fig.4.4). Reactive Oxygen Species (ROS) generation is core to the effects of

PDT and has been clearly explained to be its major mechanism of effecting tissue damage

[100][81][16][108][99]. To validate the effects of this on MVP generation, we used the

antioxidants Vitamin C (Vit C) and N-acetylcysteine (NAC). Both 0.5mM doses of Vit C

and NAC acting alone sufficiently inhibited MVP generation following PDT. Their combi-

nation, however, did not yield any significant additive or synergistic effect (Fig.4.6). This

is similar to several reports of attenuation of PDT effects in the presence of antioxidants

[78][61][53][101]. Since generation of ROS is central to the actions of PDT, a correspond-

ing inhibition in MVP production following the application of antioxidants as shown in

our study, suggests the involvement of MVPs in PDT operations. The acid sphingomyeli-

nase (aSMase) enzyme catalyses the reaction that leads to the formation of ceramide which

in turn, causes MVP shedding off from the cell membrane. This forms the bedrock of

MVP production from cells [24][27][92][87]. We validated aSMase involvement in PDT-

generated MVP by using a potent inhibitor of the enzyme, Imipramine, and a murine model

of the human Neimann-pick disease, smpd1 KO mice [55][1][96]. Imipramine significantly
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inhibited the production of MVP following PDT in vitro, ex vivo and in vivo (Fig.4.7 and

Fig.4.8). To further accentuate this, there was no significant generation of MVP in the

smpd1 KO mice as compared to the wild type strains (Fig.4.9). This strongly agrees with

the aSMase pathway being largely responsible for MVP production from cells. The G-

coupled receptor, Platelet-activating factor receptor (PAFR) signaling has been shown to

be involved in the release of MVP [70][120][106]. We envisaged its involvement in PDT-

induced MVP generation and investigated using in vitro KB cells and in vivo pafr KO mice.

Our in vitro studies showed that MVP generation in KB cells is independent on the PAFR

(Fig.4.10). In furtherance to this, normal human Fibroblasts that have been shown to be

deficient in PAFR [49][14], yielded significant amounts of MVP release following PDT

treatment. Our in vivo data, however, suggests a partial involvement of PAFR as the MVP

yield in pafr KO mice skin following, was insignificant as compared to the sham group.

Further studies are needed to validate this. The model that is emerging appears to be that

although PDT can generate PAFR agonists, and PAFR agonists generate MVP, yet PDT

likely generates such a toxic stimulus to the cells that MVP are produced independently of

the PAFR. Similar unpublished studies from our laboratory indicate that thermal burn in-

jury can also induce MVP release in PAFR-negative KB cells. However, regarding thermal

burn injury, consistently higher levels of MVP are generated in PAFR+ over PAFR-negative

KB cells.

5.2 Limitations and Future Studies

Despite showing the generation of MVP following PDT and possible pathways involved,

there is no strong evidence to validate the role MVPs play in the actions of PDT. As with

other studies involving EVs, another limitation of this study is the difficulty in clearly

delineating MVPs from smaller exosomes. As such, some exosomes may be involved in

these actions attributed to MVPs. An important follow-up will be to investigate the up- and
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downstream signaling involved in the generation of MVPs following PDT. Future studies

could test the ability of imipramine to block PDT-induced cytokine/inflammatory effects in

skin explants/mice. This could allow pharmacologic manipulation of the process to assess

if MVP are involved in the inflammation or immunomodulation associated with PDT.

5.3 Conclusion

These studies provide compelling evidence that PDT when used clinically results in the

generation of MVPs. Thus, these studies suggest the possible involvement of MVP in the

actions of PDT. An improved understanding of the exact role(s) of MVP in PDT clini-

cal effectiveness/toxicities can result in novel strategies to improve this treatment modal-

ity. Thus, MVPs can be engineered to modify and widen the application of PDT. PDT-

generated MVP release can be successfully blocked by imipramine and antioxidants. This

can be possibly considered to help clinically to reduce side effects of PDT. The role of

PAFR appears limited; further studies are needed.
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Appendix

6.1 Appendix 1: Supplemental Figures

Figure 6.1: PAFR expression in KB cells and human fibroblasts. Total RNA was extracted
from KB cells and Fibroblast by TRIzol and extracted RNA was quantified with Nanodrop
One (thermo fisher). High-Capacity cDNA Reverse Transcription kit was used to tran-
scribed RNA samples to cDNA for the analysis of the PAF-R mRNA expression using a
SYBR green-based, quantitative fluorescent PCR method. The fluorescence was detected
using a StepOne Real-Time PCR machine (Applied Biosystems, Foster City, CA, USA).
Primers were specific for PAF-R, GAPDH (as an endogenous control) and PAF-R expres-
sion in these cell lines were compared with stably PAF-R-expressing cell line-KBP and
PAF-R-deficient cell line-KBM as positive and negative controls. The quantification of
each PCR product was normalized to GAPDH using the 2-∆∆Ct method.
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Figure 6.2: Dose response curve of PDT-induced MVP release in fibroblasts. Primary
cultures of human fibroblasts either received No treatment (NT), 500ng PMA in 3ml
HBSS+BSA, 100ng CPAF in 3ml HBSS+BSA, 2.5J PDT (208secs), 5J PDT (416secs),
10J PDT (832secs) or 20J PDT (1663secs). PMA and CPAF being positive and negative
controls respectively. A progressive increase in MVP count was obtained as PDT dose
increased, reaching a peak at 20J. The data depicted are mean + SE fold change in MVP
count (average of n=2). Groups were compared using one-way ANOVA and Tukey’s post-
hoc test. Differences in samples were considered significant if the P value was less than
0.05. P<0.05 (*), P<0.001(***) and P<0.0001(****).
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Figure 6.3: Relative survival rate of HaCaT cells following Antioxidant treatment. Ha-
CaT cells had different concentrations of the antioxidants Vitamin C (VitC) and N-
acetylcysteine (NAC) dissolved in fresh complete media and were incubated for 1hour
at 37C. Plates subsequently had Trypan blue staining as described earlier and cell count
was done with the Countess R© machine. Cell count is taken as a percentage of the no
treatment (NT) count. Higher doses of VitC and NAC significantly decreased cell count,
appearing toxic. The data depicted are mean SE fold change in MVP count (average of
n=3). Groups were compared using one-way ANOVA and Tukey’s post-hoc test. Differ-
ences in samples were considered significant if P value is less than 0.05. P<0.001(***)
and P<0.0001(****).
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Figure 6.4: Effect of antioxidants on PMA- and CPAF-treated HaCaT cells. HaCaT cells
were pre-treated with 0.5mM VitC and NAC for 1hour at 37C. They subsequently had
500ng PMA and 100ng CPAF both in 3ml HBSS+BSA treatments and were incubated for
4hours at 37C. Supernatants were harvested and processed for MVP isolation. Antioxi-
dants reduced significantly the MVP generated by CPAF unlike PMA treated cells. The
data depicted are mean SE fold change in MVP count (average of n=4). Groups were
compared using one-way ANOVA and Tukey’s post-hoc test. Differences in samples were
considered significant if P value is less than 0.05. P<0.05(*), P<0.01(**), P<0.001(***),
P<0.0001(****) and ns denotes not significant.
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Figure 6.5: Imipramine inhibits production of MVPs by PDT in KB cells. KBP (a) and
KBM (b) cells were treated with 50M imipramine, a known aSMase inhibitor, immediately
after PDT. Other groups were treated with 100nm CPAF, 500nm PMA or 0.1%EtOH (Veh).
Imipramine was able to inhibit production of MVPs by PDT significantly in these 2 cell
lines. The data depicted are mean SE fold change in MVP count (average of n=8). Groups
were compared using one-way ANOVA and Tukey’s post-hoc test. Differences in samples
were considered significant if P is less than 0.05. P<0.05 (*), P<0.01(**), P<0.001(***),
P<0.0001(****).

Figure 6.6: Antioxidants inhibits production of MVPs by PDT in KB cells. KBP (a) and
KBM (b) cells had 5-ALA incubation in the dark for 4hrs and were then treated with the an-
tioxidants, 0.5mM Vitamin C (VitC) and 0.5mM N-acetylcysteine (NAC) for 1hour. Cells
were subsequently exposed to blue light and supernatant were harvested 4hrs later. Other
groups were treated as earlier described. Both antioxidants significantly reduced MVP
generated following PDT. There was, however, no difference when they were combined.
The data depicted are mean SE fold change in MVP count (average of n=5). Groups
were compared using one-way ANOVA and Tukey’s post-hoc test. Differences in samples
were considered significant if P is less than 0.05. P<0.05 (*), P<0.01(**), P<0.001(***),
P<0.0001(****) and ns denotes not significant.
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6.2 Appendix 2: Procedural Pictures

Figure 6.7: Groups of mice undergoing blue light treatment.
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Figure 6.8: Skin preparation for PDT treatment.
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